Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Microorganisms ; 12(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38543628

RESUMEN

Vitis vinifera, an economically significant grapevine species, is known for wine, juice, and table grape production. The berries of wine grapes host a diverse range of microorganisms influencing both grapevine health and the winemaking process. Indigenous to Greece, the emblematic variety Assyrtiko, renowned for high-quality white wines, originated from Santorini and spread to various Greek regions. Despite existing studies on the microbiota of several varieties, the carposphere microbiota of Assyrtiko grapes remains unexplored. Thus, we conducted a spatiotemporal metagenomic study to identify the epiphytic microbial community composition of Assyrtiko grapes. The study was conducted in two consecutive vintage years (2019 and 2020) across three different and distinct viticulture regions in Greece (Attica, Thessaloniki, Evros). We performed amplicon sequencing, targeting the 16S rRNA gene for bacteria and the ITS region for fungi, with subsequent comprehensive bioinformatic analysis. Our data indicate that the distribution and relative abundance of the epiphytic carposphere microbial communities of the Assyrtiko variety are shaped both by vintage and biogeography.

2.
Lupus Sci Med ; 11(1)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38471723

RESUMEN

OBJECTIVES: In SLE, deregulation of haematopoiesis is characterised by inflammatory priming and myeloid skewing of haematopoietic stem and progenitor cells (HSPCs). We sought to investigate the role of extramedullary haematopoiesis (EMH) as a key player for tissue injury in systemic autoimmune disorders. METHODS: Transcriptomic analysis of bone marrow (BM)-derived HSPCs from patients with SLE and NZBW/F1 lupus-prone mice was performed in combination with DNA methylation profile. Trained immunity (TI) was induced through ß-glucan administration to the NZBW/F1 lupus-prone model. Disease activity was assessed through lupus nephritis (LN) histological grading. Colony-forming unit assay and adoptive cell transfer were used to assess HSPCs functionalities. RESULTS: Transcriptomic analysis shows that splenic HSPCs carry a higher inflammatory potential compared with their BM counterparts. Further induction of TI, through ß-glucan administration, exacerbates splenic EMH, accentuates myeloid skewing and worsens LN. Methylomic analysis of BM-derived HSPCs demonstrates myeloid skewing which is in part driven by epigenetic tinkering. Importantly, transcriptomic analysis of human SLE BM-derived HSPCs demonstrates similar findings to those observed in diseased mice. CONCLUSIONS: These data support a key role of granulocytes derived from primed HSPCs both at medullary and extramedullary sites in the pathogenesis of LN. EMH and TI contribute to SLE by sustaining the systemic inflammatory response and increasing the risk for flare.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , beta-Glucanos , Humanos , Animales , Ratones , Hematopoyesis , Células Madre Hematopoyéticas
3.
Microorganisms ; 12(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38399636

RESUMEN

As the food and pharmaceutical industry is continuously seeking new probiotic strains with unique health properties, the aim of the present study was to determine the impact of short-term dietary intervention with novel wild-type strains, isolated from various sources, on high-fat diet (HFD)-induced insulin resistance. Initially, the strains were evaluated in vitro for their ability to survive in simulated gastrointestinal (GI) conditions, for adhesion to Caco-2 cells, for bile salt hydrolase secretion, for cholesterol-lowering and cellular cholesterol-binding ability, and for growth inhibition of food-borne pathogens. In addition, safety criteria were assessed, including hemolytic activity and susceptibility to antibiotics. The in vivo test on insulin resistance showed that mice receiving the HFD supplemented with Pediococcus acidilactici SK (isolated from human feces) or P. acidilactici OLS3-1 strain (isolated from olive fruit) exhibited significantly improved insulin resistance compared to HFD-fed mice or to the normal diet (ND)-fed group.

4.
CRISPR J ; 6(6): 514-526, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38052051

RESUMEN

As CRISPR-based technologies are widely used for knocking out genes in cell lines and organisms, there is a need for the development of reliable, cost-effective, and fast methods that identify fully mutated clones. In this context, we present a novel strategy named PCR-induced mutagenesis-restriction fragment length polymorphism (PIM-RFLP), which is based on the well-documented robustness and simplicity of the classical PCR-RFLP approach. PIM-RFLP allows the assessment of the editing efficiency in pools of edited cells and the effective identification of fully mutated single-cell clones. It is based on the creation by mutagenic PCR of a restriction enzyme degenerate cleavage site in the PCR product of the wild-type allele, which can then be distinguished from the indel-containing alleles following the standard RFLP procedure. PIM-RFLP is highly accessible, can be executed in a single day, and appears to outperform Sanger sequencing deconvolution algorithms in the detection of fully mutated clones.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Polimorfismo de Longitud del Fragmento de Restricción , Sistemas CRISPR-Cas/genética , Reacción en Cadena de la Polimerasa/métodos , Mutagénesis/genética
5.
Biomolecules ; 13(9)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37759737

RESUMEN

Abracl (ABRA C-terminal-like protein) is a small, non-typical winged-helix protein that shares similarity with the C-terminal domain of the protein ABRA (Actin-Binding Rho-Activating protein). The role of Abracl in the cell remains elusive, although in cancer cells, it has been implicated in proliferation, migration and actin dynamics. Our previous study showed that Abracl mRNA was expressed in the dividing cells of the subpallial subventricular zone (SVZ), in the developing cortical plate (CP), and in the diencephalic SVZ; however, the molecular identities of the Abracl-expressing cell populations were not defined in that work. In this study, we use double immunofluorescence to characterize the expression of Abracl on sections of embryonic murine (E11.5-E18.5) and feline (E30/31-E33/34) telencephalon; to this end, we use a battery of well-known molecular markers of cycling (Ki67, Ascl1, Dlx2) or post-mitotic (Tubb3, Gad65/67, Lhx6 and Tbr1) cells. Our experiments show that Abracl protein has, compared to the mRNA, a broader expression domain, including, apart from proliferating cells of the subpallial and diencephalic SVZ, post-mitotic cells occupying the subpallial and pallial mantle (including the CP), as well as subpallial-derived migrating interneurons. Interestingly, in late embryonic developmental stages, Abracl was also transiently detected in major telencephalic fiber tracts.


Asunto(s)
Actinas , Mamíferos , Animales , Gatos , Ratones , Corteza Cerebral , ARN Mensajero/genética , Telencéfalo
6.
Mediterr J Rheumatol ; 34(2): 271-274, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37654629

RESUMEN

Background: Despite the development of treatments targeting T cell co-stimulation and cytokines TNF, IL-12/23, and IL-17, less than half of patients within clinical trials achieve high levels of clinical response. This fact, as well as the absence of prognostic biomarkers represents major unmet clinical needs that necessitate further investigation of the disease pathophysiology. Myeloid cells are critical components of PsA inflammatory mechanisms, being a highly prevalent immune population in biopsies of PsA target tissues, such as the skin and the synovium. Through their antigen-presenting capacity and their pro-angiogenic and pro-inflammatory properties myeloid cells could contribute to persistent inflammation in PsA leading to treatment-resistant disease. To this end, we have recently shown the expansion of monocytes in the blood of PsA patients compared to healthy subjects. Importantly, we have also identified an immature myeloid cell population in patients with highly active, refractory disease, indicating the presence of an "emergency myelopoiesis" process in PsA. Aim of the study: In this research protocol, we aim to decipher the pro-inflammatory "myeloid signature" in patients with active PsA and explore the role of immature myeloid cells in disease pathophysiology and their potential as prognostic biomarkers. Methods: To address this, we will isolate and analyse monocytes and immature myeloid cells from PsA patients -before and after a 6-month treatment course- focusing on differences between responders and non-responders. In this context, we will perform a thorough phenotypic and functional analysis of these cells, identify their expression signature in an already established whole blood RNA-seq dataset and investigate their presence in target tissues, such as the skin and synovial fluid. Anticipated benefits: This study will elucidate the role of myeloid cells in disease propagation by further defining the involvement of immature myeloid cells in PsA.

7.
Front Immunol ; 14: 1203848, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37475860

RESUMEN

Objective: A blood-based biomarker is needed to assess lupus nephritis (LN) disease activity, minimizing the need for invasive kidney biopsies. Long non-coding RNAs (lncRNAs) are known to regulate gene expression, appear to be stable in human plasma, and can serve as non-invasive biomarkers. Methods: Transcriptomic data of whole blood samples from 74 LN patients and 20 healthy subjects (HC) were analyzed to identify differentially expressed (DE) lncRNAs associated with quiescent disease and flares. Weighted gene co-expression network analysis (WGCNA) was performed to uncover lncRNAs with a central role (hub lncRNAs) in regulating key biological processes that drive LN disease activity. The association of hub lncRNAs with disease activity was validated using RT-qPCR on an independent cohort of 15 LN patients and 9 HC. cis- and trans-targets of validated lncRNAs were explored in silico to examine potential mechanisms of their action. Results: There were 444 DE lncRNAs associated with quiescent disease and 6 DE lncRNAs associated with flares (FDR <0.05). WGCNA highlighted IFN signaling and B-cell activity/adaptive immunity as the most significant processes contributing to nephritis activity. Four disease-activity-associated lncRNAs, namely, NRIR, KLHDC7B-DT, MIR600HG, and FAM30A, were detected as hub genes and validated in an independent cohort. NRIR and KLHDC7B-DT emerged as potential key regulators of IFN-mediated processes. Network analysis suggests that FAM30A and MIR600HG are likely to play a central role in the regulation of B-cells in LN through cis-regulation effects and a competing endogenous RNA mechanism affecting immunoglobulin gene expression and the IFN-λ pathway. Conclusions: The expression of lncRNAs NRIR, KLHDC7B-DT, FAM30A, and MIR600HG were associated with disease activity and could be further explored as blood-based biomarkers and potential liquid biopsy on LN.


Asunto(s)
Nefritis Lúpica , ARN Largo no Codificante , Humanos , Nefritis Lúpica/diagnóstico , Nefritis Lúpica/genética , Biomarcadores , Perfilación de la Expresión Génica , Biopsia Líquida
8.
Brain Sci ; 14(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38248250

RESUMEN

Essential oils exhibit numerous medicinal properties, including antimicrobial, anti-inflammatory and antioxidant effects. Recent studies also indicate that certain essential oils demonstrate anti-amyloidogenic activity against ß-amyloid, the protein implicated in Alzheimer's disease. To investigate whether the anti-aggregating properties of essential oils extend to α-synuclein, the protein involved in Parkinson's disease, we constructed and employed a whole-cell biosensor based on the split-luciferase complementation assay. We validated our biosensor by using baicalein, a known inhibitor of α-synuclein aggregation, and subsequently we tested eight essential oils commonly used in food and the hygienic industry. Two of them, citron and sage, along with their primary components, pure linalool (the main constituent in citron essential oil) and pure eucalyptol (1,8-cineole, the main constituent in sage essential oil), were able to reduce α-syn aggregation. These findings suggest that both essential oils and their main constituents could be regarded as potential components in functional foods or incorporated into complementary Parkinson's disease therapies.

9.
Front Biosci (Elite Ed) ; 14(4): 31, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36575848

RESUMEN

BACKGROUND: Cheese microbiome plays a key role in determining the organoleptic and physico-chemical properties and may be also used as an authenticity tool for distinguishing probiotic cultures. Due to significant reduction of cell viability often witnessed during food production processes and storage, immobilization is proposed to ascertain high probiotic cell loads required to confer the potential health benefits. Hence, the aim of the present study was to investigate the effect of free or immobilized Lactiplantibacillus plantarum T571 on whey protein on feta cheese microbiome. METHODS: Next-Generation Sequencing technology was used to investigate cheese microbiome. Cheese samples containing free or immobilized Lactiplantibacillus plantarum T571 (a wild type strain isolated from Feta cheese brine) on whey protein, along with products containing commercial starter culture, were analyzed. RESULTS: The results showed a great diversity of bacteria and fungi genera among the samples. An increased presence of Lactobacillus OTUs in cheese with immobilized cells on whey protein was witnessed, highlighting the survival of the strain in the final product. The immobilized culture had also a significant impact on other genera, such as Lactococcus, Leuconostoc and Debaryomyces, which are associated with improved technological characteristics and health benefits. CONCLUSIONS: Enrichment of feta cheese with immobilized potential probiotics to secure cell viability consists of an industrial challenge and leads to distinct microbiome composition that may be used as a valuable food authenticity tool.


Asunto(s)
Queso , Queso/análisis , Queso/microbiología , Proteína de Suero de Leche , Manipulación de Alimentos/métodos
10.
Front Immunol ; 13: 964274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159832

RESUMEN

Background: An interplay between immune cells and resident skin and joint stromal cells is implicated in psoriatic arthritis (PsA), yet the mechanisms remain elusive with a paucity of molecular biomarkers for activity and response. Combined transcriptomic and immunophenotypic analysis of whole blood and skin fibroblasts could provide further insights. Methods: Whole blood RNA-seq was performed longitudinally in 30 subjects with PsA at the beginning, one and six months after treatment, with response defined at six months. As control groups, 10 healthy individuals and 10 subjects with rheumatoid arthritis (RA) were recruited combined with public datasets from patients with psoriasis (PsO) and systemic lupus erythematous (SLE). Differential expression analysis and weighted gene co-expression network analysis were performed to identify gene expression signatures, while deconvolution and flow cytometry to characterize the peripheral blood immune cell profile. In a subset of affected and healthy individuals, RNA-seq of skin fibroblasts was performed and subjected to CellChat analysis to identify the blood-skin fibroblast interaction network. Results: PsA demonstrated a distinct "activity" gene signature in the peripheral blood dominated by TNF- and IFN-driven inflammation, deregulated cholesterol and fatty acid metabolism and expansion of pro-inflammatory non-classical monocytes. Comparison with the blood transcriptome of RA, PsO, and SLE revealed a "PsA-specific signature" enriched in extracellular matrix remodeling. This was further supported by the skin fibroblast gene expression profile, displaying an activated, proliferating phenotype, and by skin-blood interactome analysis revealing interactions with circulating immune cells through WNT, PDGF and immune-related semaphorins. Of note, resistance to treatment was associated with upregulation of genes involved in TGFß signaling and angiogenesis and persistent increase of non-classical monocytes. Differentially expressed genes related to platelet activation and hippo signaling discriminated responders and non-responders as early as one month after treatment initiation. Conclusion: Transcriptome analysis of peripheral blood and skin fibroblasts in PsA reveals a distinct disease activity signature and supports the involvement of skin fibroblasts through their activation and interaction with circulating immune cells. Aberrant TGFß signaling and persistently increased non-classical monocytes characterize treatment-resistant PsA, with pro-inflammatory pathways related to platelet activation and Hippo signaling predicting early response to treatment.


Asunto(s)
Artritis Psoriásica , Artritis Reumatoide , Lupus Eritematoso Sistémico , Psoriasis , Semaforinas , Artritis Psoriásica/tratamiento farmacológico , Artritis Psoriásica/genética , Biomarcadores/metabolismo , Ácidos Grasos/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Humanos , Lupus Eritematoso Sistémico/metabolismo , Psoriasis/metabolismo , Semaforinas/metabolismo , Transcriptoma , Factor de Crecimiento Transformador beta/metabolismo
11.
Front Immunol ; 13: 889075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032139

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are myeloid precursors that exert potent immunosuppressive properties in cancer. Despite the extensive knowledge on mechanisms implicated in mobilization, recruitment, and function of MDSCs, their therapeutic targeting remains an unmet need in cancer immunotherapy, suggesting that unappreciated mechanisms of MDSC-mediated suppression exist. Herein, we demonstrate an important role of NLRP3 inflammasome in the functional properties of MDSCs in tumor-bearing hosts. Specifically, Nlrp3-deficient mice exhibited reduced tumor growth compared to wild-type animals and induction of robust anti-tumor immunity, accompanied by re-wiring of the MDSC compartment. Interestingly, both monocytic (M-MDSCs) and granulocytic (G-MDSCs) subsets from Nlrp3-/- mice displayed impaired suppressive activity and demonstrated significant transcriptomic alterations supporting the loss-of-function and associated with metabolic re-programming. Finally, therapeutic targeting of NLRP3 inhibited tumor development and re-programmed the MDSC compartment. These findings propose that targeting NLRP3 in MDSCs could overcome tumor-induced tolerance and may provide new checkpoints of cancer immunotherapy.


Asunto(s)
Células Supresoras de Origen Mieloide , Animales , Línea Celular Tumoral , Inmunoterapia , Inflamasomas , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR
12.
Ann Rheum Dis ; 81(10): 1409-1419, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35906002

RESUMEN

OBJECTIVES: Patients with lupus nephritis (LN) are in urgent need for early diagnosis and therapeutic interventions targeting aberrant molecular pathways enriched in affected kidneys. METHODS: We used mRNA-sequencing in effector (spleen) and target (kidneys, brain) tissues from lupus and control mice at sequential time points, and in the blood from 367 individuals (261 systemic lupus erythematosus (SLE) patients and 106 healthy individuals). Comparative cross-tissue and cross-species analyses were performed. The human dataset was split into training and validation sets and machine learning was applied to build LN predictive models. RESULTS: In murine SLE, we defined a kidney-specific molecular signature, as well as a molecular signature that underlies transition from preclinical to overt disease and encompasses pathways linked to metabolism, innate immune system and neutrophil degranulation. The murine kidney transcriptome partially mirrors the blood transcriptome of patients with LN with 11 key transcription factors regulating the cross-species active LN molecular signature. Integrated protein-to-protein interaction and drug prediction analyses identified the kinases TRRAP, AKT2, CDK16 and SCYL1 as putative targets of these factors and capable of reversing the LN signature. Using murine kidney-specific genes as disease predictors and machine-learning training of the human RNA-sequencing dataset, we developed and validated a peripheral blood-based algorithm that discriminates LN patients from normal individuals (based on 18 genes) and non-LN SLE patients (based on 20 genes) with excellent sensitivity and specificity (area under the curve range from 0.80 to 0.99). CONCLUSIONS: Machine-learning analysis of a large whole blood RNA-sequencing dataset of SLE patients using human orthologs of mouse kidney-specific genes can be used for early, non-invasive diagnosis and therapeutic targeting of LN. The kidney-specific gene predictors may facilitate prevention and early intervention trials.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Proteínas de Unión al ADN/genética , Diagnóstico Precoz , Perfilación de la Expresión Génica , Humanos , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/genética , Nefritis Lúpica/diagnóstico , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/genética , Ratones , ARN
13.
Sci Rep ; 11(1): 15759, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344937

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease where bone-marrow-derived haematopoietic cells have a key role in its pathogenesis with accumulating evidence suggesting an aberrant function of haematopoietic stem/progenitor cells (HSPCs). We examined whether patrolling HSPCs differ from bone-marrow HSPCs both in SLE and healthy individuals, and how they participate in peripheral tissue injury. By employing next-generation RNA sequencing, the transcriptomes of CD34+ HSPCs deriving from the bone marrow and those patrolling the bloodstream of both healthy and individuals with SLE were compared. Patrolling SLE and Healthy human HSPC kinetics were examined through their inoculation into humanised mice. Patrolling and bone-marrow HSPCs have distinct molecular signatures, while patrolling SLE HSPCs showed an enhanced extramedullary gene expression profile. Non-mobilised, SLE-derived circulating HSPCs demonstrated altered homing capacities. Xenotransplantation of circulating HSPCs in humanised mice showed that human peripheral blood HSPCs possess the ability for extramedullary organ colonisation to the kidneys. Circulating and bone marrow-derived HSPCs are distinct in steady and diseased states. Patrolling SLE CD34+ HSPCs are able to home at extramedullary sites such as the spleen and kidneys, potentially participating in peripheral tissue injury.


Asunto(s)
Médula Ósea/patología , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/patología , Riñón/patología , Lupus Eritematoso Sistémico/patología , Bazo/patología , Transcriptoma , Adulto , Anciano , Animales , Médula Ósea/metabolismo , Estudios de Casos y Controles , Femenino , Células Madre Hematopoyéticas/metabolismo , Humanos , Riñón/lesiones , Riñón/metabolismo , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Persona de Mediana Edad , Bazo/lesiones , Bazo/metabolismo
14.
Front Endocrinol (Lausanne) ; 12: 702446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367070

RESUMEN

One of the most widely used types of assisted reproduction technology is the in vitro fertilization (IVF), in which women undergo controlled ovarian stimulation through the administration of the appropriate hormones to produce as many mature follicles, as possible. The most common hormone combination is the co-administration of gonadotropin-releasing hormone (GnRH) analogues with recombinant or urinary-derived follicle-stimulating hormone (FSH). In the last few years, scientists have begun to explore the effect that different gonadotropin preparations have on granulosa cells' maturation and apoptosis, aiming to identify new predictive markers of oocyte quality and successful fertilization. Two major pathways that control the ovarian development, as well as the oocyte-granulosa cell communication and the follicular growth, are the PI3K/Akt/mTOR and the Hippo signaling. The purpose of this article is to briefly review the current knowledge about the effects that the different gonadotropins, used for ovulation induction, may exert in the biology of granulosa cells, focusing on the importance of these two pathways, which are crucial for follicular maturation. We believe that a better understanding of the influence that the various ovarian stimulation protocols have on these critical molecular cascades will be invaluable in choosing the best approach for a given patient, thereby avoiding cancelled cycles, reducing frustration and potential treatment-related complications, and increasing the pregnancy rate. Moreover, individualizing the treatment plan will help clinicians to better coordinate assisted reproductive technology (ART) programs, discuss the specific options with the couples undergoing IVF, and alleviate stress, thus making the IVF experience easier.


Asunto(s)
Fertilización In Vitro/normas , Gonadotropinas/farmacología , Vía de Señalización Hippo , Ovario/efectos de los fármacos , Inducción de la Ovulación/métodos , Serina-Treonina Quinasas TOR/metabolismo , Femenino , Humanos , Ovario/metabolismo , Embarazo
15.
Brain Sci ; 11(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946187

RESUMEN

MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate.

16.
Cancer Immunol Res ; 9(7): 726-734, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33820810

RESUMEN

Immune checkpoint inhibitors (ICI), which target immune regulatory pathways to unleash antitumor responses, have revolutionized cancer immunotherapy. Despite the remarkable success of ICI immunotherapy, a significant proportion of patients whose tumors respond to these treatments develop immune-related adverse events (irAE) resembling autoimmune diseases. Although the clinical spectrum of irAEs is well characterized, their successful management remains empiric. This is in part because the pathogenic mechanisms involved in the breakdown of peripheral tolerance and induction of irAEs remain elusive. Herein, we focused on regulatory T cells (Treg) in individuals with irAEs because these cells are vital for maintenance of peripheral tolerance, appear expanded in the peripheral blood of individuals with cancer, and abundantly express checkpoint molecules, hence representing direct targets of ICI immunotherapy. Our data demonstrate an intense transcriptomic reprogramming of CD4+CD25+CD127- Tregs in the blood of individuals with advanced metastatic melanoma who develop irAEs following ICI immunotherapy, with a characteristic inflammatory, apoptotic, and metabolic signature. This inflammatory signature was shared by Tregs from individuals with different types of cancer developing irAEs and individuals with autoimmune diseases. Our findings suggest that inflammatory Treg reprogramming is a feature of immunotherapy-induced irAEs, and this may facilitate translational approaches aiming to induce robust antitumor immunity without disturbing peripheral tolerance.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/inmunología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Linfocitos T Reguladores/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/sangre , Femenino , Humanos , Proteínas de Punto de Control Inmunitario/metabolismo , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/genética , Inmunofenotipificación , Masculino , Melanoma/sangre , Melanoma/inmunología , Melanoma/secundario , Persona de Mediana Edad , RNA-Seq , Neoplasias Cutáneas/sangre , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Transcriptoma/inmunología , Adulto Joven
17.
Front Neuroanat ; 15: 785541, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975420

RESUMEN

The telencephalon develops from the alar plate of the secondary prosencephalon and is subdivided into two distinct divisions, the pallium, which derives solely from prosomere hp1, and the subpallium which derives from both hp1 and hp2 prosomeres. In this first systematic analysis of the feline telencephalon genoarchitecture, we apply the prosomeric model to compare the expression of a battery of genes, including Tbr1, Tbr2, Pax6, Mash1, Dlx2, Nkx2-1, Lhx6, Lhx7, Lhx2, and Emx1, the orthologs of which alone or in combination, demarcate molecularly distinct territories in other species. We characterize, within the pallium and the subpallium, domains and subdomains topologically equivalent to those previously described in other vertebrate species and we show that the overall genoarchitectural map of the E26/27 feline brain is highly similar to that of the E13.5/E14 mouse. In addition, using the same approach at the earlier (E22/23 and E24/25) or later (E28/29 and E34/35) stages we further analyze neurogenesis, define the timing and duration of several developmental events, and compare our data with those from similar mouse studies; our results point to a complex pattern of heterochronies and show that, compared with the mouse, developmental events in the feline telencephalon span over extended periods suggesting that cats may provide a useful animal model to study brain patterning in ontogenesis and evolution.

18.
Ann Rheum Dis ; 79(2): 242-253, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31780527

RESUMEN

OBJECTIVES: Haematopoietic stem and progenitor cells (HSPCs) are multipotent cells giving rise to both myeloid and lymphoid cell lineages. We reasoned that the aberrancies of immune cells in systemic lupus erythematosus (SLE) could be traced back to HSPCs. METHODS: A global gene expression map of bone marrow (BM)-derived HSPCs was completed by RNA sequencing followed by pathway and enrichment analysis. The cell cycle status and apoptosis status of HSPCs were assessed by flow cytometry, while DNA damage was assessed via immunofluorescence. RESULTS: Transcriptomic analysis of Lin-Sca-1+c-Kit+ haematopoietic progenitors from diseased lupus mice demonstrated a strong myeloid signature with expanded frequencies of common myeloid progenitors (CMPs)-but not of common lymphoid progenitors-reminiscent of a 'trained immunity' signature. CMP profiling revealed an intense transcriptome reprogramming with suppression of granulocytic regulators indicative of a differentiation arrest with downregulation trend of major regulators such as Cebpe, Cebpd and Csf3r, and disturbed myelopoiesis. Despite the differentiation arrest, frequencies of BM neutrophils were markedly increased in diseased mice, suggesting an alternative granulopoiesis pathway. In patients with SLE with severe disease, haematopoietic progenitor cells (CD34+) demonstrated enhanced proliferation, cell differentiation and transcriptional activation of cytokines and chemokines that drive differentiation towards myelopoiesis, thus mirroring the murine data. CONCLUSIONS: Aberrancies of immune cells in SLE can be traced back to the BM HSPCs. Priming of HSPCs and aberrant regulation of myelopoiesis may contribute to inflammation and risk of flare. TRIAL REGISTRATION NUMBER: 4948/19-07-2016.


Asunto(s)
Reprogramación Celular/inmunología , Células Madre Hematopoyéticas/inmunología , Lupus Eritematoso Sistémico/inmunología , Células Mieloides/inmunología , Transcriptoma/inmunología , Animales , Apoptosis/inmunología , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Ciclo Celular/inmunología , Mapeo Cromosómico , Daño del ADN , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Factor Estimulante de Colonias de Granulocitos/metabolismo , Granulocitos/inmunología , Linfocitos/inmunología , Ratones
19.
PLoS One ; 13(12): e0209369, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30571765

RESUMEN

The full-length members of the Groucho/Transducin-like Enhancer of split gene family, namely Grg1-4, encode nuclear corepressors that act either directly, via interaction with transcription factors, or indirectly by modifying histone acetylation or chromatin structure. In this work we describe a detailed expression analysis of Grg1-4 family members during embryonic neurogenesis in the developing murine telencephalon. Grg1-4 presented a unique, complex yet overlapping expression pattern; Grg1 and Grg3 were mainly detected in the proliferative zones of the telencephalon, Grg2 mainly in the subpallium and finally, Grg4 mainly in the subpallial post mitotic neurons. In addition, comparative analysis of the expression of Grg1-4 revealed that, at these stages, distinct telencephalic progenitor domains or structures are characterized by the presence of different combinations of Grg repressors, thus forming a "Grg-mediated repression map".


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neurogénesis/genética , Mapas de Interacción de Proteínas/fisiología , Proteínas Represoras/metabolismo , Telencéfalo/embriología , Animales , Embrión no Mamífero , Femenino , Ratones , Ratones Endogámicos C57BL , Proteínas Represoras/genética
20.
Sci Rep ; 8(1): 13790, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30214018

RESUMEN

Groucho related gene 5 (GRG5) is a multifunctional protein that has been implicated in late embryonic and postnatal mouse development. Here, we describe a previously unknown role of GRG5 in early developmental stages by analyzing its function in stem cell fate decisions. By both loss and gain of function approaches we demonstrate that ablation of GRG5 deregulates the Embryonic Stem Cell (ESC) pluripotent state whereas its overexpression leads to enhanced self-renewal and acquisition of cancer cell-like properties. The malignant characteristics of teratomas generated by ESCs that overexpress GRG5 reveal its pro-oncogenic potential. Furthermore, transcriptomic analysis and cell differentiation approaches underline GRG5 as a multifaceted signaling regulator that represses mesendodermal-related genes. When ESCs exit pluripotency, GRG5 promotes neuroectodermal specification via Wnt and BMP signaling suppression. Moreover, GRG5 promotes the neuronal reprogramming of fibroblasts and maintains the self-renewal of Neural Stem Cells (NSCs) by sustaining the activity of Notch/Hes and Stat3 signaling pathways. In summary, our results demonstrate that GRG5 has pleiotropic roles in stem cell biology functioning as a stemness factor and a neural fate specifier.


Asunto(s)
Transformación Celular Neoplásica/patología , Células Madre Embrionarias/citología , Placa Neural/embriología , Células-Madre Neurales/citología , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Células Cultivadas , Proteínas Co-Represoras , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Interferencia de ARN , ARN Interferente Pequeño/genética , Factores de Transcripción/genética , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...